Exploring complex phenomena using ultracold atoms in bichromatic lattices.
نویسندگان
چکیده
With an underlying common theme of competing length scales, we study the many-body Schrödinger equation in a quasiperiodic potential and discuss its connection with the Kolmogorov-Arnold-Moser (KAM) problem of classical mechanics. We propose a possible visualization of such connection in experimentally accessible many-body observables. Those observables are useful probes for the three characteristic phases of the problem: the metallic, Anderson and band insulator phases. In addition, they exhibit fingerprints of nonlinear phenomena such as bifurcations and devil's staircases. Our numerical treatment is complemented with a perturbative analysis which provides insight on the underlying physics. The perturbation theory approach is particularly useful in illuminating the distinction between the Anderson insulator and the band insulator phases in terms of paired sets of dimerized states.
منابع مشابه
Effective Dirac dynamics of ultracold atoms in bichromatic optical lattices
We study the dynamics of ultracold atoms in tailored bichromatic optical lattices. By tuning the lattice parameters, one can readily engineer the band structure and realize a Dirac point, i.e., a true crossing of two Bloch bands. The dynamics in the vicinity of such a crossing is described by the one-dimensional Dirac equation, which is rigorously shown beyond the tight-binding approximation. W...
متن کاملVeselago lensing with ultracold atoms in an optical lattice.
Veselago pointed out that electromagnetic wave theory allows for materials with a negative index of refraction, in which most known optical phenomena would be reversed. A slab of such a material can focus light by negative refraction, an imaging technique strikingly different from conventional positive refractive index optics, where curved surfaces bend the rays to form an image of an object. H...
متن کاملSpin-orbit coupling and Berry phase with ultracold atoms in 2D optical lattices.
We show how spin-orbit coupling and Berry phase can appear in two-dimensional optical lattices by coupling atoms' internal degrees of freedom to radiation. The Rashba Hamiltonian, a standard description of spin-orbit coupling for two-dimensional electrons, is obtained for the atoms under certain circumstances. We discuss the possibility of observing associated phenomena, such as the anomalous H...
متن کاملManipulating novel quantum phenomena using synthetic gauge fields
The past few years have seen fascinating progress in the creation and utilization of synthetic gauge fields for charge-neutral ultracold atoms. Whereas the synthesis of gauge fields in itself is readily interesting, it is more exciting to explore the new era that will be brought by the interplay between synthetic gauge fields and many other degrees of freedom of highly tunable ultracold atoms. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review. E, Statistical, nonlinear, and soft matter physics
دوره 82 1 Pt 2 شماره
صفحات -
تاریخ انتشار 2010